مقایسه روش های سری زمانی و شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

نویسندگان

نسرین آزاد طلاتپه

جواد بهمنش

مجتبی منتصری

وحیدرضا وردی نژاد

چکیده

تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های arو armaو بهترین مدل شبکه عصبی از بین شبکه­های با تابع پایه شعاعی (rbf) و پرسپترون چندلایه (mlp) انتخاب گردید. در گام دوم دو مدل انتخاب شده با یکدیگر مقایسه شدند. در مدل­های شبکه­ عصبی ذکر شده تاخیر­های ماهانه مختلف از تبخیر-تعرق مرجع به عنوان ورودی شبکه انتخاب گردید. در این فرآیند مقادیرتبخیر-تعرق مرجع ماهانه از سال 1350 تا 1389 با استفاده از روش پنمن مونتیث فائو محاسبه شد. داده­های مذکور از سال1350 تا 1384 برای انتخاب بهترین مدل سری زمانی و بهترین ساختار شبکه­ها استفاده و از داده­های 1385 تا 1389 به­منظور مقایسه روش­ها استفاده گردید. نتایج نشان داد که مدل ar(11)در بین سایر مدل­های سری زمانی عملکرد بهتری داشته و مدل rbfدارای خطای کمتری نسبت به مدل mlpبود. مقایسه بهترین مدل سری زمانی (مدل ar(11)) با بهترین مدل شبکه عصبی (مدل rbf) نشان داد که مدل rbfتوانست مقادیر تبخیر-تعرق مرجع را در دوره 1385 تا 1389 با خطای کمتری پیش­بینی کند. مقدار جذر میانگین مربعات خطا در دو مدل ar(11)و rbfبه ترتیب 85/1 و 999/0 میلی­متر در ماه به دست آمد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های سری زمانی و شبکه عصبی مصنوعی در پیش‌بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

     تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های A...

متن کامل

ارزیابی مدل‌های سری زمانی خطی و غیر خطی بی‌لینییر در پیش بینی تبخیر- تعرق گیاه مرجع در ایستگاه سینوپتیک ارومیه

پیش­بینی تبخیر-تعرق گیاه مرجع یکیاز مهمترین عناصردر بهینه سازی مصرف آب کشاورزی است. یکیازروش­هایپیش­بینی مقادیرتبخیر-تعرق گیاه مرجعاستفاده از مدل­های استوکاستیکسری زمانیاست. دراینپژوهشمدل­های خطی AR(p) و ARMA(p,q) به همراه مدل غیر خطی بی­لینییر درپیش­بینی مقادیر ماهانهتبخیر-تعرق گیاه مرجع درایستگاهسینوپتیک ارومیهمورد مقایسه قرار گرفت. برای انجام پژوهش، مقادیر ماهانه تبخیر-تعرق گیاه مرجع از سال ...

متن کامل

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

متن کامل

کاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی

برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار می‌رود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول می‌رسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از داده‌های هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...

متن کامل

پیش بینی تبخیر-تعرق مرجع با استفاده از شبکه های عصبی مصنوعی rbf ،mlp svm

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم ترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش بینی تبخیر-تعرق مرجع روزانه و هفتگی می تواند در پیش بینی نیاز آبی گیاهان و برنامه ریزی کوتاه مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی mlp(پرسپترون چندلایه)، rbf (شبکه تابع پایه ای شعاعی)، svm (ماشین بردار پشتیبان) در پیش بینی تبخیر-تعرق م...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
علوم و مهندسی آبیاری

ناشر: دانشگاه شهید چمران اهواز - دانشکده مهندسی علوم آب

ISSN 0254-3648

دوره 38

شماره 4 2016

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023